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Abstract—High-level synthesis (HLS) is playing an ever-
increasing role in hardware design, but concerns have been raised
about its reliability. Seeking to address these, Herklotz et al.
have developed an HLS compiler called Vericert that has been
mechanically proven (using the Coq proof assistant) to output
Verilog designs that are behaviourally equivalent to the input C
program. Unfortunately, Vericert cannot compete performance-
wise with established HLS tools, and a major reason for this is
Vericert’s complete lack of support for resource sharing.

This paper introduces Vericert-Fun: Vericert extended with
function-level resource sharing. Where original Vericert creates
one block of hardware per function call, Vericert-Fun creates
one block of hardware per function definition. To enable this,
we extend Vericert’s intermediate language HTL with the ability
to represent multiple state machines, and we implement function
calls by transferring control between these state machines. We
are working to extend Vericert’s correctness proof to cover the
translation from C into this extended HTL and thence to Verilog.
Benchmarking on the PolyBench/C suite indicates that Vericert-
Fun generates hardware with about 0.8× the resource usage of
Vericert’s on average, with minimal impact on execution time.

I. INTRODUCTION

The drive for faster, more energy-efficient computation has
led to a surge in demand for custom hardware accelerators.
This, in turn, has led to interest in high-level synthesis (HLS)
as a means to program these devices. Yet doubts have been
raised about the reliability of the current crop of HLS tools.
For instance, Herklotz et al. [12] found numerous miscom-
pilation bugs in Xilinx Vivado HLS [24], the Intel HLS
Compiler [15], and LegUp [5]. This unreliability can be a
significant hindrance for developers, and it undermines the
usefulness of HLS in safety- or security-critical settings.

Aiming to address this issue is Vericert [13], a new HLS
tool whose correctness has been verified to the highest possible
standard: a computer-checked proof that any Verilog design
it produces will behave the same way as the C program
given as input. Yet it is not enough for an HLS tool simply
to be correct; the generated hardware must also enjoy high
throughput, low latency, and good area efficiency – the last of
which is the topic of this paper.

A common optimisation employed by HLS tools to improve
area efficiency is resource sharing; that is, mapping multiple
operations to the same hardware unit. Accordingly, our work
adds function-level resource sharing to Vericert, yielding a
new prototype HLS tool called ‘Vericert-Fun’. In line with
the aims of the Vericert project, work is ongoing to extend the

correctness proof. The entire Vericert-Fun development is fully
open-source [19], and more details about the implementation
and proofs are available in a technical report [18].

II. BACKGROUND

a) The Coq proof assistant: Vericert is implemented in
Coq [1], which means it consists of a collection of functions
that define the compiler, together with the proof of a theorem
that those definitions constitute a correct HLS tool. Coq
mechanically checks this proof using a formal mathematical
calculus, then translates the function definitions into OCaml
code that can be compiled and executed. Developing software
within a proof assistant like Coq is widely held to be the
gold standard for correctness, and recent years have shown
that substantial systems can be produced in this way, such as
database systems [17], web servers [6], and OS kernels [11].
Coq has also been deployed in hardware design, both in
academia [2, 3] and in industry [10]. It has even been applied
specifically to HLS: Faissole et al. [8] used it to verify that
HLS optimisations respect dependencies in the source code.

b) The CompCert verified C compiler: Among the most
celebrated applications of Coq is CompCert [16], a lightly
optimising C compiler with backend support for the Arm, x86,
PowerPC, and Kalray VLIW architectures [23]. It transforms
its input through a series of ten intermediate languages before
generating the final output. The correctness proof of the
entire compiler is formed by composing the correctness proofs
of each of those passes. That the Csmith compiler testing
tool [25] has found hundreds of bugs in GCC and LLVM
but none in (the verified parts of) CompCert is a testament to
the reliability of this development approach.

c) The Vericert verified HLS tool: Introduced by Herk-
lotz et al. [13], Vericert is a verified C-to-Verilog HLS tool,
built by extending CompCert with a new hardware-oriented
intermediate language (called HTL) and a Verilog backend.
Vericert branches off from CompCert at the intermediate
language called register-transfer language (which we shall
call ‘3AC’, for ‘three-address code’, to avoid confusion with
‘register-transfer level’). In 3AC, each function is represented
as a numbered list of instructions with gotos – i.e., a control-
flow graph (CFG). Vericert’s compilation strategy is to treat
this CFG as a state machine, with each instruction in the CFG
being a state, and each edge in the CFG being a transition.
The stack is implemented in a block of RAM, and program
variables that do not have their address taken are mapped to
hardware registers. More precisely, Vericert builds a finite state978-1-6654-8332-2/22/$31.00 ©2022 IEEE



machine with datapath (FSMD). This comprises two maps,
both taking the current state as their input: the control logic
map for determining the next state, and a datapath map for
updating the RAM and registers. These state machines are
captured in Vericert’s new intermediate language, HTL. When
Vericert compiles from HTL to the final Verilog output, these
maps are converted from mathematical functions into syntactic
Verilog case-statements, and placed inside always-blocks.

Vericert currently performs no significant optimisations be-
yond those inherited from CompCert’s frontend. This results
in performance generally about an order of magnitude slower
than that achieved by comparable, unverified HLS tools. The
overall Vericert flow is shown in Figure 1 (top). Note the ‘in-
lining’ step, which folds all function definitions into their call
sites. This allows Vericert to make the simplifying assumption
that there is only a single CFG, but has the unwanted effect
of duplicating hardware. Vericert-Fun removes some of this
inlining and hence some of the duplication.

d) Resource sharing in HLS: Resource sharing is a
feature expected of most HLS compilers. In a typical HLS-
generated architecture [7], several ‘functional components’
are selected from a library according to the needs of the
specific design, and in the scheduling process, each operation
is allotted a clock cycle in which the required components
are all available. Given the need to mechanically verify the
correctness of our implementation, Vericert-Fun follows a
simpler approach: we share resources at the granularity of
entire functions, rather than individual operations. Function-
level resource sharing is implemented in commercial HLS
compilers such as the Intel HLS compiler [15] or Xilinx
Vitis [24], and is guided by the programmer through pragmas.

Perna et al. [20] developed a verified HLS tool for the
Handel-C language, but, like Vericert, they did not implement
function-level resource sharing, instead arranging that “all
procedure and function calls are expanded in the front-end”.

III. IMPLEMENTATION OF VERICERT-FUN

We now explain the implementation of Vericert-Fun using
Figure 2 as a worked example. The overall flow is shown
in Figure 1 (bottom): we avoid inlining the function calls
at the 3AC level (except in certain circumstances described
below), instead maintaining one state machine per function.
All the state machines run simultaneously, and function calls
are implemented by sending messages between them. We then
combine all of these state machines into a single Verilog
module after renaming variables to avoid clashes.

Figure 3 shows the 3AC representation of that C program, as
obtained by the CompCert frontend. We see two CFGs, one per
function. The control flow in this example is straightforward,
but in general, 3AC programs can contain unrestricted gotos.
The nodes of the CFGs are numbered in reverse, as are the
parameters of the add function, following CompCert conven-
tion. Figure 4 depicts the result of converting those CFGs into
two state machines. The conversion of 3AC instructions into
Verilog instructions has been described already by Herklotz
et al. [13]; what is new here is the handling of function
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Fig. 1: Key compilation passes and intermediate languages in
Vericert [13] (top) and in Vericert-Fun (bottom)

int add(int a, int b)
{

return a + b;
}

int main()
{

int v = 0;
v = add(v, 1);
v = add(v, 2);
return v;

}

Fig. 2: A simple C pro-
gram with each instruction
colour-coded so it can be
tracked through the compi-
lation stages

x3 = x2 + x1 + 0(int)

return x3

add(x2, x1) {

}

x3 = 0

x6 = 1
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Fig. 3: 3AC representation
comprising two CFGs



calls, so the following concentrates on that aspect. Note that
“∗→〈node〉” stands for edges from all nodes to 〈node〉. The
solid edges within the two state machines indicate the transfer
of control between states, while the dashed edges between the
state machines are more ‘fictional’. The ground truth is that
both state machines run continuously, but it is convenient to
think that only one machine does useful work at a time. So,
the dashed edges indicate when the ‘active’ machine changes.

In more detail: Execution begins in state 9 of the main ma-
chine, and proceeds through successive states until it reaches
state 7, in which the add machine’s rst signal is set. This
causes the add machine to advance to state 2. When main

advances to state 12, that rst signal is unset; add then begins
its computation while main spins in state 12. When add has
finished (state 1), it sets its fin signal, which allows main

to leave state 12. Finally, add unsets its fin and waits in
state 3 for the next call. The same event sequence can also be
understood using the timing diagram in Figure 5, in which red
lines indicate unspecified values. We see that calls are initiated
by triggering the rst signal of the called module and that a
function returns by setting its own fin register.

One technical challenge we encountered in the implemen-
tation of Vericert-Fun has to do with the fact that the called
and callee state machines need to modify each other’s vari-
ables. This is problematic because each function is translated
independently, and hence the register names used in the other
state machines may not be available. We work around this by
introducing an additional component to our state machines: an
‘extern_ctrl’ mapping from local register names to pairs
of module identifiers and roles in those modules. For instance,
the first entry in extern_ctrl in Figure 4 tells us that the
add_0_rst register used by main should resolve to whichever
register plays the role of ‘reset’ in add. Once all the state
machines have been generated, we erase extern_ctrl. We
do this in two steps. First, we rename all registers to be
globally unique, which avoids unintended conflicts between
registers in different modules (register names can only be
assumed unique within their own module). We then rename
all registers mentioned in extern_ctrl to the name of the
actual register they target.

A second technical challenge we encountered in the imple-
mentation of Vericert-Fun has to do with an assumption made
in Vericert’s correctness proof: that all pointers are stored as
offsets from the main function’s stack frame. This assumption
was reasonable for Vericert because after full inlining, the main
function is the only function. This assumption is baked into
several of Vericert’s most complicated lemmas, including the
correctness proof for load and store instructions, and so we
have not sought to lift it in our current prototype of Vericert-
Fun. Instead, we have made the compromise of only partially
eliminating the inlining pass. That is: Vericert-Fun inlines
all functions that contain load, store or call instructions.
Thus, the benefits of resource sharing are currently only en-
joyed by functions that do not contain load or store instructions
and do not call other functions.

reg_3 <= 0;

reg_6 <= 1;

add_0_rst <= 1;
add_0_a <= reg_3;
add_0_b <= reg_6;

add_0_rst <= 0;
reg_1 <= add_0_ret;

reg_3 <= reg_1;

reg_5 <= 2;

add_1_rst <= 1;
add_1_a <= reg_3;
add_1_b <= reg_5;

add_1_rst <= 0;
reg_2 <= add_1_ret;

reg_3 <= reg_2;
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fin = 1;
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extern_ctrl:
add_0_rst 7→ (add, reset)
add_0_ret 7→ (add, return)
add_0_fin 7→ (add, finish)
add_0_a 7→ (add, param 0)
add_0_b 7→ (add, param 1)
add_1_rst 7→ (add, reset)
add_1_ret 7→ (add, return)
add_1_fin 7→ (add, finish)
add_1_a 7→ (add, param 0)
add_1_b 7→ (add, param 1)

Fig. 4: HTL representation comprising two state machines
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Fig. 5: Timing diagram for the state machines in Figure 4



IV. PROVING VERICERT-FUN CORRECT

The CompCert correctness theorem [16] states that every
behaviour of the compiled program is also a behaviour of the
source program. Herklotz et al. [13] adapted this theorem for
HLS by replacing ‘compiled program’ with ‘generated Verilog
design’. In both cases, a formal semantics is required for the
source and target languages. Vericert-Fun targets the same
fragment of the Verilog language as Herklotz et al. already
mechanised in Coq, so no changes are required there.

Where changes are required is in the semantics of the
intermediate language HTL, which sits between CompCert’s
3AC and the final Verilog. When Herklotz et al. designed HTL,
they did not include a semantics for function calls because they
assumed all function calls would already have been inlined.
We have extended HTL so that its semantics is additionally
parameterised by an environment that maps function names
to state machines. Our semantics for function calls looks
up the named function in this environment, activates the
corresponding state machine, and pushes a new stack frame,
and our semantics for return statements pops the current stack
frame and reactivates the caller’s state machine.

At the point of writing, the correctness of Vericert-Fun
from C to HTL has been mostly proven: basic instructions
and function calls are proven correct, but proofs of load and
store instructions still lack some key invariants. The pass
that renames variables in HTL is yet to be proven, as is the
Verilog-generation pass. To give a rough idea of the scale and
complexity of our work: the implementation of Vericert-Fun
involved adding or changing about 700 lines of Coq code in
Vericert and took the first author 4 months. The correctness
proof has so far required about 2300 lines of additions or
changes to the Coq code and 8 person-months of work.

V. PERFORMANCE EVALUATION

We now compare the quality of the hardware generated
by Vericert-Fun against that of Vericert. We use the open-
source (but unverified) Bambu tool [9, 21] as a baseline. We
run Bambu (version 0.9.6) in the BAMBU_AREA configuration,
which optimises for area ahead of latency, but do not provide
any additional pragmas to control the HLS process. Following
Herklotz et al. [13], we use the PolyBench/C benchmark
suite [22] with division and modulo replaced with iterative
software implementations because Vericert does not handle
them efficiently. That is, a/b and c%d are textually replaced
with div(a,b) and mod(c,d). These div and mod functions
are the only function calls that are not inlined. We used the
Icarus Verilog simulator to determine the cycle counts of the
generated designs. We used Xilinx Vivado 2017.1, targeting
a Xilinx 7-series FPGA (XC7K70T) to determine area usage
(measured in slices) and fmax.

Figure 6 compares the hardware generated by Vericert-Fun
with that of Vericert, using Bambu as a baseline. The top graph
compares the area usage. We observe a substantial reduction
in area usage across the benchmark programs, with Vericert
consistently using more area than Bambu (1.5× on average)
and Vericert-Fun requiring less area than Vericert (0.8× on
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Fig. 6: Vericert-Fun vs Vericert-Fun, with Bambu as a baseline.

average), but still more than Bambu (1.2× on average). As
expected, the benchmarks with several function calls (mvt,
2mm, 3mm, ludcmp) enjoy the biggest area savings, while
those with only one function call (heat-3d, nussinov) require
slightly more area because of the extra circuitry required.
The bottom graph compares the execution time. We observe
that Vericert-Fun generates hardware that is slightly (about
4%) slower than Vericert’s, which can be attributed to the
latency overhead of performing a function call. Hardware
from Vericert and Vericert-Fun is significantly slower than
Bambu’s, which can be attributed to Vericert employing far
fewer optimisations than the unverified Bambu tool.

VI. FUTURE WORK

Our immediate priority is to complete Vericert-Fun’s cor-
rectness proof. In the medium term, we intend to improve
our implementation of resource sharing by dropping the re-
quirement to inline functions that access pointers or perform
function calls; we anticipate that this will lead to further
area savings and also allow Vericert-Fun to be evaluated on
benchmarks with more interesting call graphs. We would also
like Vericert-Fun to generate designs with one Verilog module
per C function, as this is more idiomatic than cramming all
the state machines into a single module; we did not do this yet
because it requires extending the Verilog semantics to handle
multiple modules. It would also be interesting to implement
selective inlining of functions [14], either guided by heuristics
or by programmer-supplied pragmas. It is worth noting that
having proven inlining correct in general, the amount of in-
lining can be adjusted without affecting the correctness proof.
Longer term, we would like to combine resource sharing with
operation scheduling, i.e. resource-constrained scheduling [4].
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